Our latest paper: “Factorization and criticality in finite interacting spin systems under a nonuniform magnetic field”

Our latest paper just got published by Physical Review Letter! Let me briefly explain what our manuscript is about:

Factorization and criticality in finite interacting spin systems under a nonuniform magnetic field


Exact ground states of strongly interacting spin systems are normally highly entangled and  complex. Yet at particular finite values of the applied magnetic field such systems may exhibit a completely separable exact ground state, i.e. a simple product state where each spin points along a specific direction. Such remarkable phenomenon is known as ground state factorization.

Here we show the existence of an exceptionally degenerate set of completely separable ground states in XXZ systems immersed in a nonuniform field, arising at a remarkable quantum critical point where all magnetization plateaus merge. These points can emerge in arrays of any size, spin and dimension for a wide range of nonuniform field configurations, and exhibit other special critical properties like long range pair entanglement in their immediate vicinity.

The XXZ model is an archetypal quantum spin system which has helped to understand interacting many-body systems and their quantum phase transitions, and which has recently received renewed attention due the possibility of its finite size simulation with state-of-the-art technologies and its potential for implementing quantum information processing tasks. Among other possibilities, present results open the way to design exactly separable ground states in such system through a finite controlled field, which can be used as initial states for quantum protocols.

You can find the paper here:


And on the arXiv:



About marcocerezo

I'm Marco Cerezo, I have a Ph.D in Physics and I'm currently a Postdoctoral Research Associate at Los Alamos National Laboratory in New Mexico, USA. My main fields of study are Quantum Information, Quantum Computing and Condensed Matter. Currently I'm working to develop novel quantum algorithms which can be useful in near-term quantum devices.
This entry was posted in My Papers, Quantum Information and Quantum Computation: General Discussions and tagged , , , , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s